
5 Scalable and Hilbert spaces

Definition 5.1 Let X be a vector space over K . A map 〈·, ·〉 : X × X → K is
called scalar product iff, for all x, y, z ∈ X and all k ∈ K

1. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉,

2. 〈kx, y〉 = k〈x, y〉,

3. 〈x, y〉 = 〈y, x〉,

4. 〈x, x〉 ≥ 0,

5. 〈x, x〉 = 0 ⇔ x = 0.

We conclude immediately that we have as well

1. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉,

2. 〈x, ky〉 = k〈x, y〉.

Exercise: In the Brazilean jungle there is an armed group of rebellious mathemati-
cians claiming that the ’real, eternal and unique definition of a scalar product is the
one of a nondegenerate symmetric bilinear form with 〈x, x〉 ∈ (−∞, 0] · i’. Who’s
right?

Theorem 5.2 (Cauchy-Schwarz inequality) Let 〈·, ·〉 be a scalar product on a
vector space V . Then we have, for all x, y ∈ V ,

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉.

If {x, y} is linearly independent, then the inequality is strict.

Proof. For any s ∈ K, we have

0 ≤ 〈x + sy, x + sy〉
= 〈x, x〉+ s〈x, y〉+ s〈x, y〉+ |λ|2〈y, y〉.

With the special choice y 6= 0, s := − 〈x,y〉
〈y,y〉 we get

0 ≤ 〈x, x〉 − |〈x, y〉|2

〈y, y〉
− |〈x, y〉|2

〈y, y〉
+
|〈x, y〉|2

〈y, y〉

which gives immediately the Cauchy-Schwarz inequality. Equality implies x + sy =
0. 2

Theorem 5.3 Let V be a vector space with a scalar product 〈·, ·〉. Then ||x|| :=√
〈x, x〉 defines a norm.

Proof. We have to show sublinearity (triangle inequality at 0):

||x + y||2 = ||x||2 + 2Re〈x, y〉+ ||y||2 ≤ ||x||2 + 2||x|| · ||y||+ ||y||2 = (||x||+ ||y||)2,

where the inequality uses the Cauchy-Schwarz inequality and the definition of ab-
solute value in K . 2
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Theorem 5.4 A norm || · || in a tvs X is associated to a scalar product as in
Theorem 5.3 if and only if, for all x, y ∈ X,

||x + y||2 + ||x− y||2 = 2||x||2 + 2||y||2. (1)

Moreover, in this case, the scalar product is continuous.

Proof. We treat the real case leaving the complex one as an exercise. The fact
that, if the norm is defined by a scalar product, the equation holds, is quite trivial.
If Equation 1 holds, then the only map from X ×X to R inducing the norm as in
Theorem 5.3 is

〈x, y〉 :=
1
4
(||x + y||2 − ||x− y||2).

(prove that, exercise). It is easy to check that then indeed ||x||2 = 〈x, x〉 and
that 〈·, ·〉 : X × X → R is continuous. We will use Equation 1 to prove that 〈·, ·〉
is a scalar product. We will only show linearity in the first argument, the other
properties being easy to seen as direct consequences.
Now, for x, y, z ∈ X, Equation 1 implies

||x + y + z||2 = 2||x + z||2 + 2||y||2 − ||x− y + z||2 =: a, (2)
||x + y + z||2 = 2||y + z||2 + 2||x||2 − || − x + y + z||2 =: b. (3)

Therefore we have

||x + y + z||2 =
a + b

2
= ||x + z||2 + ||x||2 + ||y + z||2 + ||y||2

− 1
2
(||x− y + z||2 + || − x + y + z||2)

and analogously

||x + y − z||2 = ||x− z||2 + ||x||2 + ||y − z||2 + ||y||2

− 1
2
(||x− y − z||2 + || − x + y − z||2).

This implies

〈x + y, z〉 =
1
4
(||x + y + z||2 − ||x + y − z||2)

=
1
4
(||x + z|2 + ||y + z||2 − ||x− z||2 − ||y − z||2)

= 〈x, z〉+ 〈y, z〉.

For the scalar multiplication, observe that by the above we already have 〈sx, y〉 =
s〈x, y〉 for s ∈ N and by the usual easy argument also for s ∈ Z. For rational s = m

n
observe

n〈sx, y〉 = n〈m · ( 1
n
· x), y〉 = m〈x, y〉 = ns〈x, y〉
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which implies the statement for s rational. Now s → s〈x, y〉−〈sx, y〉 is a continuous
real function on R and vanishes on the rationals, therefore it vanishes everywhere.
2

Exercise: Which of the norms seen so far come from a Hilbert product in the sense
of Theorem 5.3? In particular, what about B(X, Y ) for X normed, Y Banach?

As an easy corollary, we get

Theorem 5.5 A normed space has an associated scalar product if and only if all
its two-dimensional subspaces are Euclidean. Linear subspaces of scaled spaces are
scaled spaces. The completion of a scaled space is a Hilbert space.

Proof: Exercise. 2

Exercise: Let S be any set. Define A(S) as the set of almost everywhere vanishing
K -valued functions (w.r.t. the counting measure, i.e. everywhere except in count-
ably many points). Now for f ∈ A(S) define ||f || :=

∑
|f(x)|2. Show that | · | is a

well-defdined map taking values in [0,∞]. Now define l2(S) := {f ∈ A(S) : ||f || <
∞}. Show that this is a Hilbert space.
Remark for Connaisseurs: We could have defined l2(S) := L2(S, τ, µc) for τ the
discrete topology and µ the counting measure.
Remark: This kind of Hilbert spaces will be important once we introduced or-
thonormal bases.

Definition 5.6 Let X, 〈·, ·〉 be a scaled space. Two vectors x, y are called orthog-
onal, x ⊥ y, iff 〈x, y〉. Two subsets A,B of X are called orthogonal, A ⊥ B, if
x ⊥ y whenever x ∈ A, y ∈ B. Given a subset A of X, the subset of all vectors w of
V with {w} orthogonal to V is called orthogonal complement of V and denoted
by V ⊥.

We see immediately that

Theorem 5.7 Given a subset A of a scaled space X, we have that A⊥ = (〈A〉)⊥
and that A⊥ is a closed linear subspace of X. Moreover, A ⊂ (A⊥)⊥. In general,
the converse of the last inclusion is wrong.

Proof: Exercise. 2

Theorem 5.8 Let H be a Hilbert space, let C ⊂ H be closed and convex. Then
there is a continuous and even contractive projection PK : H → K with ||PK(h)−
h|| = dist(h, K). We have Re〈x− PK(x), y − PK(x)〉 ≤ 0 for all y ∈ K.

Proof: Exercise. Hint: considering the theorem in the Banach section You will
have to prove that Hilbert spaces are strictly convex and that the minimizing se-
quence converges. 2

The direct sum H1 ⊕ H2 of two scaled spaces carries the standard direct sum
scalar product 〈(v1, v2), w1, w2)〉 := 〈v1, w1〉1 + 〈v2, w2〉2.

Theorem 5.9 Let H be a Hilbert space and C be a closed subspace. Then there
is exactly one surjective continuous linear map PC : H → C with the following
properties:

1. P is a projection, P 2
C = PC ,

2. ker(PC) = C⊥
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Automatically we have ||PC || = 1. We call PC the orthogonal projection to C.
H is isometric to C ⊕ C⊥ with the stanard direct sum scalar product. Defining the
orthogonal projection for all closed proper subspaces, we get the relation 1 − PC =
PC⊥ .

Proof. Obviously every linear subspace of H is convex, thus by the Theorem 5.8
we get a continuous projection PC with

Re〈x− PC(x), y − PC(x)〉 ≤ 0 ∀y ∈ U, x ∈ H. (4)

Setting z := y − PC(x) ∈ C we get

Re〈x− PC(x), z〉 ≤ 0 ∀z ∈ U, x ∈ H

and, considering that i · y,−y ∈ C, we get

〈x− PC(x), z〉 = 0 ∀z ∈ U, x ∈ H,

and conversely from this follows Equation 4. Therefore PC(x) is given uniquely by
the condition

x− PC(x) ∈ C⊥. (5)

This characterization implies trivially linearity and the kernel property. The last
property is easy to see by turning around the argument: By Theorem 5.7 we know
that C⊥ is a closed subspace. Now by 5, 1− PC takes values in C⊥, and x− (1−
PC)(x) = PC(x) ∈ P ⊂ (C⊥)⊥. Therefore (1− PC) satisfies the defining condition
5 for C⊥. 2

As a corollary, we get

Theorem 5.10 For every linear subspace U of a Hilbert space H we have U =
(U⊥)⊥.

Proof. Put V := U . By continuity, V ⊥ = U⊥, and by the preceeding theorem we
have P(V ⊥)⊥ = 1 − PV ⊥ . Therefore PU = PV = P(V ⊥)⊥ = P(U⊥)⊥ which implies
the statement of the theorem. 2

Theorem 5.11 (Frechet-Riesz Representation Theorem) Let H be a Hilbert
space. Then the map φ : v 7→ 〈v, ·〉 is a linear isometric isomorphism between H
and H∗.

Proof. Linearity is trivial from sesquilinearity of the scalar product. The Cauchy-
Schwartz inequality implies ||φ(v)||H∗ ≤ ||v||H , and for v 6= 0 we get (φ(v))(||v||−1v) =
||v||, therefore φ is an isometry and therefore injective. It remains to show that φ is
surjective. Now let a nonzero vector y ∈ H∗ be given, then define K := kery ⊂ H
which is a closed linear subspace. Following Theorem 5.9, K has an orthogonal
complement C on which moreover y is injective, so C is one-dimensional and can
be written as C := K · x where x is a normalized vector in H, so H is isometric
to K ⊕ K · x, and thus for r := y(x) and x̃ := r · x, then using the direct sum
decomposition it is easy to check that w = φ(x̃), thus φ is also surjective. 2

Theorem 5.12 (Bilinear maps) Let H be a complex Hilbert space and B : H ×
H → C sesquilinear. Then the following statements are equivalent:
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1. B is continuous.

2. y 7→ B(x, y) is continuous and x 7→ B(x, y) are continuous for all x, y ∈ H.

3. There is an M ≥ 0 with |B(x, y)| ≤ M ||x|| · ||y|| for all x, y ∈ H.

If B is continuous, there is a continuous linear map L : H → H with B(x, y) =
〈Lx, y〉, for all x, y ∈ H. If there is additionally an m > 0 s.t. for all x ∈ H we
have B(x, x) ≥ m||x||2 (this property is called coercivity), then L is invertible with
||L−1|| ≤ m−1.

Proof: Exercise. 2

Definition 5.13 Let V be a scaled space. A subset S of V is called orthonormal
system iff 〈s, s〉 = 1 for all s ∈ S and 〈s, t〉 = 0 for s, t ∈ S, s 6= t. An orthonormal
system S is called maximal iff every orthonormal system containing S is equal to
S.

Example-Exercise: Give a maximal orthonormal system of l2(N)!

Example: Let I := [0, 2π]. Then, for x ∈ I define s0(x) := 1√
2π

, and, for n ∈ N,
s2n−1(x) := 1√

π
sin(n · x) , s2n(x) := 1√

π
cos(n · x). Then the set {sn|n ∈ N ∪ {0}}

is an orthonormal system (use partial integration!).

Example-Exercise: Show that S = {x 7→ 1√
2π

einx|n ∈ Z} is an orthonormal
system in L2(I, C)!

Theorem 5.14 (Gram-Schmidt method) Let S be a countable linear indepen-
dent subset of a scaled space V . Then there is an orthonormal system N with
〈N〉 = 〈S〉.

Proof. Define e1 := S1
||S1|| and inductively

ek+1 :=
Sk+1 −

∑k
i=1〈Sk+1, ei〉ei

||Sk+1 −
∑k

i=1〈Sk+1, ei〉ei||
which is well-defined as the enumerator is a non-zero vector because of linear inde-
pendence. Then E := {en|n ∈ N} is an orthonormal system. By construction we
have en ∈ 〈S〉, and inductively we get Sn ∈ 〈E〉 as well, thus the same holds for
their closures. 2

Theorem 5.15 (Bessel’s inequality) Let V be a scaled space and {en|n ∈ N} a
orthonormal system in V , let v ∈ V be arbitrary. Then we have

∞∑
i=1

|〈v, ei〉| ≤ ||v||2.

Proof. Let, for abitrary N ∈ N, PNv :=
∑N

i=1〈v, ei〉ei be the orthogonal projection
on AN := 〈{e1, ...en}〉, then QN := 1−PN is the orthogonal projection on A⊥

N , and
by v = Pnv + Qnv we get

||v||2 = ||Qnv||2 + ||
N∑

n=1

〈v, en〉en||2

= ||Qnv||2 +
N∑

n=1

|〈v, en〉|2 ≥
N∑

n=1

|〈v, en〉|2.
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By taking the limit we get the statement. 2

As immediate corollaries we get

Theorem 5.16 Let {en|n ∈ N} be an orthonormal system in a scaled space V , let
v, w ∈ V . Then

∞∑
i=1

|〈v, ei〉〈ei, w〉| ≤ ||v|| · ||w||.

Proof. Combine the Cauchy-Schwarz inequality in l2(N) with Bessel’s inequality.
2

Theorem 5.17 Let S be an orthonormal system in a scaled space V , let v ∈ V .
Then Sv := {s ∈ S|〈s, v〉 6= 0} is at most countable.

Proof. Define Sv,n := {s ∈ S|〈s, v〉 > 1
n}. Bessel’s inequality implies that every

Sv,n is finite. Therefore Sv as countable union of finite sets is countable. 2

With this in mind, and taking into account that the terms in the sum of Bessel’s
inequality are nonnegative, one can formulate and immediately prove the following

Theorem 5.18 (General Bessel’s Inequality) Let S be an orthonormal system
in a scaled space V , then ∑

s∈S

|〈v, s〉|2 ≤ ||v||2

for every v ∈ V . 2

Remark. Of course, the relevance of the more general version of the theorem lies
in its applications to non-separable scaled spaces. There, we do not have a pre-
scribed order in summing up the terms, thus we need the notion of unconditional
convergence. A series converges unconditionally to a vector iff it converges to the
same vector after any permutation of the terms.

Theorem 5.19 Let V be a Hilbert space and E be an orthonormal system in V .
Then:

1. For all v ∈ V , the series
∑

e∈E〈v, e〉e converges unconditionally.

2. The map PE : v 7→
∑

e∈E〈v, e〉e is the orthogonal projection on 〈E〉.

Proof. To prove the first statement, let a bijective S : N → Ev be an ordering of
Ev (which is countable following Theorem 5.17) and S◦π another ordering. Bessel’s
inequality implies that for N,M →∞ we have

||
M∑

i=N

〈v, ei〉ei|| =
M∑

i=N

|〈v, ei〉ei|2 → 0

and analogously for the other ordering, thus both series are Cauchy and thus have
limits

w :=
∞∑

i=1

〈v, ei〉ei, wπ :=
∞∑

i=1

〈v, eπ(i)〉eπ(i).

We have to show that w = wπ. Let x ∈ V be arbitrary, then
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〈w, x〉 =
∞∑

i=1

〈w, ei〉 · 〈ei, x〉 =
∞∑

i=1

〈w, eπ(i)〉 · 〈eπ(i), x〉 = 〈wπ, x〉

(the second equality uses absolute and thus unconditional convergence following
Theorem 5.16). For the second statement, considering Equation 5 Theorem 5.9, we
have to show that

x−
∞∑

i=1

〈x, ei〉ei, e〉 = 0

for all e ∈ E. Either 〈x, e〉 = 0, then this equation holds trivially. Or 〈x, e〉 6= 0,
then following Theorem 5.17 we have that there is an N ∈ N with e = eN , then the
equation holds as well. 2

Theorem 5.20 Let S be an orthonormal system in a Hilbert space H. Then there is
a maximal orthonormal system Ŝ containing S. Moreover, the following statements
are equivalent:

1. S is maximal.

2. S⊥ = {0}.

3. 〈S〉 = H.

4. For all x ∈ H we have x =
∑

s∈S〈x, s〉s.

5. For all x, y ∈ H we have 〈x, y〉 =
∑

s∈S〈x, s〉〈s, y〉.

6. For all x ∈ H we have ||x|| =
∑

s∈S |〈x, s〉|2.

Proof. The first property follows directly from Zorn’s Lemma.
(1) ⇒ (2): If S⊥ 3 v 6= 0, then S′ := S∪{v/||v||} is an orthonormal system properly
containing S, thus S was not maximal.
(2) ⇒ (3): Use Theorem 5.10.
(3) ⇒ (4): As the closure of the linear span of S is the whole Hilbert space, for
every x ∈ H there is a sequence of coefficients an ∈ K and sn ∈ S with

∑
ansn = x.

But the coefficients are given uniquely by the scalar products.
(4) ⇒ (5): Using (4), there are sn ∈ S, n ∈ N, and x =

∑∞
i=1〈x, ei〉ei. Then use

bilinearity and continuity of the scalar product and convergence of the series.
(5) ⇒ (6) Trivial.
(6) ⇒ (1) Suppose S is not maximal, choose an orthonormal system S properly
containing S and a normalized element n of S \ S. Then we get 1 = ||n|| =∑

s∈S〈n, s〉 = 0, a contradiction. 2

As a corollary, we get (note that the coefficients are unique as scalar products):

Theorem 5.21 A maximal orthonormal system is a Schauder basis (and therefore
also called orthonormal basis).

Theorem 5.22 For a non-finite-dimensional Hilbert space H the following state-
ments are equivalent:

1. H is separable.

2. All orthonormal bases of H are countable.

3. H has a countable basis.
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Proof. (1) ⇒ (2): Suppose there is an uncountable orthonormal basis B. As we
have ||b − a|| =

√
2 for all a, b ∈ B, a 6= b, the unit balls around the elements of B

are all disjoint, so there cannot be a countable dense subset of H.
(2) ⇒ (3): trivial, as H has an orthonormal basis due to Theorem 5.20.
(3) ⇒ (1) was already treated in the section about Schauder bases. 2

Theorem 5.23 If S and T are orthonormal bases of a Hilbert space H, then they
have the same cardinality.

Proof. W.r.o.g. let S be at least countable. Now for every element s of S, the set
Ts := {t ∈ T |〈t, s〉 6= 0} is countable due to Theorem 5.17. Therefore and because
of S⊥ = {0} we get the estimate |T | ≤ |S| · |N| = |S|. The same argument applies
conversely giving |S| ≤ |T |. With the set-theoretic Theorem of Schröder-Bernstein
follows |S| = |T |. 2

Theorem 5.24 If S is an orthonormal base of a Hilbert space H, then H is iso-
metric to l2(S).

Proof. Define a linear map L : H → l2(S) by A(v)(s) := 〈v, s〉. This map does take
values in l2(S) because of Bessel’s inequality, and Parseval’s equality implies that it
is an isometry. Conversely, define a linear map K : l2(S) → H by a →

∑
a(s)·s. Let

sn be an ordering of the points in S where a does not vanish. Then for N,M →∞,

||
M∑

i=N

a(si) · si|| =
M∑

i=N

|a(si)|2 → 0,

therefore the series is Cauchy and converges. With the same argument as in The-
orem 5.19 one can show that the limit does not depend on the chosen ordering.
Therefore the map K is well-defined, and it is obviously an inverse to L. 2

Together with Theorem 5.22, this theorem has the shocking consequence:

Theorem 5.25 Every infinite-dimensional separable Hilbert space is isometric to
l2(N). 2

If we identify Hilbert spaces by isomorphisms, we have only one infinite-dimensional
separable Hilbert space! Considering this poorly diversified zoo, we should be glad
that we begun our journey with more general tvs than Hilbert spaces... :-)
Exercise: Give an example of a scaled space X and a linear supspace S of X with
S 6= (S⊥)⊥, and one with S ⊕ S⊥ 6= X!
Exercise: Let H be a Hilbert space and A ∈ BL(H,H). Show that ker(A) =
(A∗(H))⊥!
Exercise: Let B := C0([a, b], R), and let K ∈ C0([a, b]2, R), and consider the
operator AK : B → B given by AK(f)(y) :=

∫ b

a
K(x, y)f(x)dx. Show that for

every real r there is a natural number N only depending on r and K such that if
f1, ...fn is an L2-orthonormal system in an eigenspace of AK to the eigenvalue r,
then n ≤ N . Hint: Use Bessel’s inequality!
Exercise for the physicists: Show how by the Gram-Schmidt method the Leg-
endre polynomials as an orthonormal basis of L2([−1, 1]) are constructed out of the
basis of the monomials!
Exercise: Let U ⊂ Rn be a bounded open subset. Show that for any f ∈ L2(U, R)
there is a u ∈ W 1,2(U, R) satisfying −∆u = f in U and u = 0 in ∂U . Hint: Use
partial integration and introduce a scalar product 〈g, h〉′ := 〈g, h〉W 1,2 − 〈g, h〉L2

on W 1,2
0 . Finally, to apply the THeorem of Fréchet-Riesz, show the equivalence of

〈·, ·〉′ and 〈·, ·〉W 1,2 using the following
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Theorem 5.26 (Poincaré-Friedrichs inequality) Let U ⊂ Rn be open and bounded,
then, for s := diam(U),

||u||L2 ≤ 2s〈u, u〉′

for all u ∈ W 1,2
0 (U) (the limits of functions vanishing on the boundary).

Proof. Both sides of the equation depend continuously on the W 1,2-norm, so
because of density of C1 in its completion it is sufficient to show the inequality for
u ∈ C1

0 (U, R). Now choose [−s, s]n ⊃ U (w.r.o.g. byy translation of U) and extend
u to 0 outside U , then for x = (x1, ...xn) ∈ [−s, s]n we get

u(x) =
∫ x1

−s

∂u

∂x1
(t, x2, ..., xn)dt =

∫ s

−s

χ[−s,x1](t)
∂u

∂x1
(t, x2, ..., xn)dt

where ξI is the characteristic function of the interval I. The Cauchy-Schwary in-
equality implies

|u(x)|2 ≤
∫ s

−s

(ξ[−s,x1](t))
2dt·

∫ s

−s

| ∂u

∂x1
(t, x2, ..., xn)|2dt ≤ 2s

∫ s

−s

| ∂u

∂x1
(t, x2, ..., xn)|2dt,

and therefore

∫
U

|u(x)|2 =
∫ s

−s

dx1...

∫ s

−s

dxn|u(x)|2

≤ 2s

∫ s

−s

dx1...

∫ s

−s

dxn

∫ s

−s

| ∂u

∂x1
(t, x2, ..., xn)|2dt

= (2s)2
∫ s

−s

dx2...

∫ s

−s

dxn

∫ s

−s

dt| ∂u

∂x1
(t, x2, ..., xn)|2

= 4s2

∫
U

| ∂u

∂x1
(x)|dx ≤ 4s2〈u, u〉′

which is the required statement. 2
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